B.Math.Hons.IInd year IInd Semestral Exam 2004 Algebra IV : B.Sury

Any score of > 100 will be counted as 100

• (10 marks)

Let p be a prime and let $G \leq S_p$ act transitively on $\{1, 2, \dots, p\}$. Show that any nontrivial normal subgroup N of G must also act transitively.

OR

Let G be a finite group which has s conjugacy classes. Use Burnside's counting formula to prove that the cardinality of $\{(x, y) \in G \times G\}$ is s times O(G).

• (15 marks)

Let A be a (left) semisimple ring. Prove that every irreducible left A-module is A-isomorphic to a simple left ideal.

OR

For a finite group G, prove that the dimension of the center of the group algebra $\mathbb{C}[G]$ is the number of conjugacy classes of G.

OR

Prove that any semisimple ring has only finitely many simple left ideals up to A-isomorphism.

• (10 marks)

Prove that elements x, y of a finite group G are conjugate if, and only if, $\chi(x) = \chi(y)$ for all irreducible complex characters χ of G.

• (10 marks)

Give an example of a reducible representation of a finite group which is not completely reducible.

• (10 marks)

Let χ be an irreducible character and C be a conjugacy class of a finite

group G. Prove

$$\frac{\chi(C)}{\dim\chi} \in \bar{\mathbb{Z}}.$$

State clearly what you use.

OR

Let $\rho: G \to GL_n(\mathbb{C})$ be a representation of an arbitrary group G and assume that there is some N > 0 for which $\rho(g)^N = I$ for all $g \in G$. Use Burnside's lemma to prove that Im ρ is finite.

• (10 marks)

For finite groups $H \subset G$, prove Frobenius reciprocity theorem for class functions.

OR

Let G be a finite group and H be a subgroup. If ρ is a representation of H, define the induced representation $\operatorname{Ind}_{H}^{G}\rho$ of G. If ρ is the trivial 1-dimensional representation, determine $\operatorname{Ind}_{H}^{G}\rho$.

• (15 marks)

Prove that the exponential map is a homeomorphism from a neighbourhood of $0 \in M_n(\mathbb{C})$ onto a neighbourhood of I in $GL_n(\mathbb{C})$.

OR

Prove that the columns of e^{tA} form a basis for the vector space of solutions of the system of linear equations $\frac{dX}{dt} = AX$.

• (13 marks)

Define the tangent space at a point of a matrix group. Find the tangent space at I of SU(n) and find its dimension.

OR

Show that the conjugacy classes in SU(2) are, apart from, $\{I\}$ and $\{-I\}$, homeomorphic to 2-spheres.

• (15 marks)

Define the equivalence of continuous Hilbert space representations of a

compact group. Prove that each continuous representation is equivalent to a unitary representation. State clearly all the facts you use.

\mathbf{OR}

Let (π, H) be a unitary representation of a compact group G such that H has a cyclic vector. Outline the proof of the fact that π is a Hilbert space direct sum of finite-dimensional representations. State what all you use.